3.5.94 \(\int \frac {(a+a \sec (c+d x))^2 (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx\) [494]

Optimal. Leaf size=159 \[ -\frac {4 a^2 (5 A+4 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^2 (2 A+B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 a^2 (5 A+7 B) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 (5 A+4 B) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}+\frac {2 B \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)} \]

[Out]

-4/5*a^2*(5*A+4*B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4/3
*a^2*(2*A+B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/15*a^2*
(5*A+7*B)*sin(d*x+c)/d/cos(d*x+c)^(3/2)+2/5*B*(a^2+a^2*cos(d*x+c))*sin(d*x+c)/d/cos(d*x+c)^(5/2)+4/5*a^2*(5*A+
4*B)*sin(d*x+c)/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.25, antiderivative size = 159, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.242, Rules used = {3033, 3054, 3047, 3100, 2827, 2716, 2719, 2720} \begin {gather*} \frac {4 a^2 (2 A+B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}-\frac {4 a^2 (5 A+4 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a^2 (5 A+7 B) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 (5 A+4 B) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}+\frac {2 B \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{5 d \cos ^{\frac {5}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]))/Sqrt[Cos[c + d*x]],x]

[Out]

(-4*a^2*(5*A + 4*B)*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a^2*(2*A + B)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*
a^2*(5*A + 7*B)*Sin[c + d*x])/(15*d*Cos[c + d*x]^(3/2)) + (4*a^2*(5*A + 4*B)*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d
*x]]) + (2*B*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2))

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3033

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(
d + c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3054

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d
*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x
])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n
 + 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a
*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*
n] || EqQ[c, 0])

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {(a+a \sec (c+d x))^2 (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx &=\int \frac {(a+a \cos (c+d x))^2 (B+A \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\\ &=\frac {2 B \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2}{5} \int \frac {(a+a \cos (c+d x)) \left (\frac {1}{2} a (5 A+7 B)+\frac {1}{2} a (5 A+B) \cos (c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\\ &=\frac {2 B \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2}{5} \int \frac {\frac {1}{2} a^2 (5 A+7 B)+\left (\frac {1}{2} a^2 (5 A+B)+\frac {1}{2} a^2 (5 A+7 B)\right ) \cos (c+d x)+\frac {1}{2} a^2 (5 A+B) \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\\ &=\frac {2 a^2 (5 A+7 B) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 B \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4}{15} \int \frac {\frac {3}{2} a^2 (5 A+4 B)+\frac {5}{2} a^2 (2 A+B) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 a^2 (5 A+7 B) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 B \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {1}{3} \left (2 a^2 (2 A+B)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\frac {1}{5} \left (2 a^2 (5 A+4 B)\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {4 a^2 (2 A+B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 a^2 (5 A+7 B) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 (5 A+4 B) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}+\frac {2 B \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}-\frac {1}{5} \left (2 a^2 (5 A+4 B)\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=-\frac {4 a^2 (5 A+4 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^2 (2 A+B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 a^2 (5 A+7 B) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 (5 A+4 B) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}+\frac {2 B \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 6.55, size = 1025, normalized size = 6.45 \begin {gather*} \frac {\cos ^{\frac {7}{2}}(c+d x) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \left (\frac {(5 A+4 B) \csc (c) \sec (c)}{5 d}+\frac {B \sec (c) \sec ^3(c+d x) \sin (d x)}{10 d}+\frac {\sec (c) \sec ^2(c+d x) (3 B \sin (c)+5 A \sin (d x)+10 B \sin (d x))}{30 d}+\frac {\sec (c) \sec (c+d x) (5 A \sin (c)+10 B \sin (c)+30 A \sin (d x)+24 B \sin (d x))}{30 d}\right )}{B+A \cos (c+d x)}-\frac {2 A \cos ^3(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\text {ArcTan}(\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \sec (d x-\text {ArcTan}(\cot (c))) \sqrt {1-\sin (d x-\text {ArcTan}(\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\text {ArcTan}(\cot (c)))} \sqrt {1+\sin (d x-\text {ArcTan}(\cot (c)))}}{3 d (B+A \cos (c+d x)) \sqrt {1+\cot ^2(c)}}-\frac {B \cos ^3(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\text {ArcTan}(\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \sec (d x-\text {ArcTan}(\cot (c))) \sqrt {1-\sin (d x-\text {ArcTan}(\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\text {ArcTan}(\cot (c)))} \sqrt {1+\sin (d x-\text {ArcTan}(\cot (c)))}}{3 d (B+A \cos (c+d x)) \sqrt {1+\cot ^2(c)}}+\frac {A \cos ^3(c+d x) \csc (c) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\text {ArcTan}(\tan (c)))\right ) \sin (d x+\text {ArcTan}(\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\text {ArcTan}(\tan (c)))} \sqrt {1+\cos (d x+\text {ArcTan}(\tan (c)))} \sqrt {\cos (c) \cos (d x+\text {ArcTan}(\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\text {ArcTan}(\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\text {ArcTan}(\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\text {ArcTan}(\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{2 d (B+A \cos (c+d x))}+\frac {2 B \cos ^3(c+d x) \csc (c) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\text {ArcTan}(\tan (c)))\right ) \sin (d x+\text {ArcTan}(\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\text {ArcTan}(\tan (c)))} \sqrt {1+\cos (d x+\text {ArcTan}(\tan (c)))} \sqrt {\cos (c) \cos (d x+\text {ArcTan}(\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\text {ArcTan}(\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\text {ArcTan}(\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\text {ArcTan}(\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{5 d (B+A \cos (c+d x))} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[((a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]))/Sqrt[Cos[c + d*x]],x]

[Out]

(Cos[c + d*x]^(7/2)*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x])*(((5*A + 4*B)*Csc[c]*Sec[
c])/(5*d) + (B*Sec[c]*Sec[c + d*x]^3*Sin[d*x])/(10*d) + (Sec[c]*Sec[c + d*x]^2*(3*B*Sin[c] + 5*A*Sin[d*x] + 10
*B*Sin[d*x]))/(30*d) + (Sec[c]*Sec[c + d*x]*(5*A*Sin[c] + 10*B*Sin[c] + 30*A*Sin[d*x] + 24*B*Sin[d*x]))/(30*d)
))/(B + A*Cos[c + d*x]) - (2*A*Cos[c + d*x]^3*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot
[c]]]^2]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x])*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - S
in[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcT
an[Cot[c]]]])/(3*d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]) - (B*Cos[c + d*x]^3*Csc[c]*HypergeometricPFQ[{1/4,
 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x])*Se
c[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[
Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]) + (A*Cos[c + d*x
]^3*Csc[c]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x])*((HypergeometricPFQ[{-1/2, -1/4},
{3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqr
t[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2])
 - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan
[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(2*d*(B + A*Cos[c +
 d*x])) + (2*B*Cos[c + d*x]^3*Csc[c]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x])*((Hyperg
eometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[
d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[
c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + Ar
cTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]
^2]]))/(5*d*(B + A*Cos[c + d*x]))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(713\) vs. \(2(195)=390\).
time = 4.90, size = 714, normalized size = 4.49

method result size
default \(-\frac {8 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{2} \left (\frac {A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{4 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+\frac {B \left (24 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-12 \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+12 \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{20 \left (8 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+\left (\frac {A}{4}+\frac {B}{2}\right ) \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{6 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )+\frac {\left (\frac {A}{2}+\frac {B}{4}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(714\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-8*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(1/4*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1
/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(
1/2))+1/20*B/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(2
4*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+12*Elliptic
E(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)
^2+8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*E
llipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+(1/4*A+1/2*B)*(-1/6
*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin
(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2
)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+(1/2*A+1/4*B)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin
(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(2*sin(1/2*d*x+1/2*c)
^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2
*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.72, size = 239, normalized size = 1.50 \begin {gather*} -\frac {2 \, {\left (5 i \, \sqrt {2} {\left (2 \, A + B\right )} a^{2} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} {\left (2 \, A + B\right )} a^{2} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} {\left (5 \, A + 4 \, B\right )} a^{2} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} {\left (5 \, A + 4 \, B\right )} a^{2} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (6 \, {\left (5 \, A + 4 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + 5 \, {\left (A + 2 \, B\right )} a^{2} \cos \left (d x + c\right ) + 3 \, B a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{15 \, d \cos \left (d x + c\right )^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-2/15*(5*I*sqrt(2)*(2*A + B)*a^2*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*
I*sqrt(2)*(2*A + B)*a^2*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*I*sqrt(2)
*(5*A + 4*B)*a^2*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c
))) - 3*I*sqrt(2)*(5*A + 4*B)*a^2*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c
) - I*sin(d*x + c))) - (6*(5*A + 4*B)*a^2*cos(d*x + c)^2 + 5*(A + 2*B)*a^2*cos(d*x + c) + 3*B*a^2)*sqrt(cos(d*
x + c))*sin(d*x + c))/(d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} a^{2} \left (\int \frac {A}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {2 A \sec {\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {A \sec ^{2}{\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {B \sec {\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {2 B \sec ^{2}{\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {B \sec ^{3}{\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**2*(A+B*sec(d*x+c))/cos(d*x+c)**(1/2),x)

[Out]

a**2*(Integral(A/sqrt(cos(c + d*x)), x) + Integral(2*A*sec(c + d*x)/sqrt(cos(c + d*x)), x) + Integral(A*sec(c
+ d*x)**2/sqrt(cos(c + d*x)), x) + Integral(B*sec(c + d*x)/sqrt(cos(c + d*x)), x) + Integral(2*B*sec(c + d*x)*
*2/sqrt(cos(c + d*x)), x) + Integral(B*sec(c + d*x)**3/sqrt(cos(c + d*x)), x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Mupad [B]
time = 4.15, size = 229, normalized size = 1.44 \begin {gather*} \frac {6\,B\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+20\,B\,a^2\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+30\,B\,a^2\,{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{15\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {2\,A\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,A\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,A\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^2)/cos(c + d*x)^(1/2),x)

[Out]

(6*B*a^2*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2) + 20*B*a^2*cos(c + d*x)*sin(c + d*x)*hyperg
eom([-3/4, 1/2], 1/4, cos(c + d*x)^2) + 30*B*a^2*cos(c + d*x)^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c
 + d*x)^2))/(15*d*cos(c + d*x)^(5/2)*(1 - cos(c + d*x)^2)^(1/2)) + (2*A*a^2*ellipticF(c/2 + (d*x)/2, 2))/d + (
4*A*a^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)
) + (2*A*a^2*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2
)^(1/2))

________________________________________________________________________________________